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Figure 1.1: Percentage of research work on AM of various steel categories. Adopted from [4].



Introduction

Table 1.1: The nominal composition of the most commonly AMed steels. All compositions are
in weight percent, and the Fe content is balanced.

Alloy Category C Cr Ni Mo Mn Si Other

316L Austenitic 55 <0.03 16-18 10-14 2-2.5 <2 <0.75 -

304L Austenitic S5 <0.03 17.5-19.5  8-10.5 - <2 <1 -

18Ni-300 Marageing steel <0.03 <0.5 17-19  4.5-5.2 <01 <0.1  0.6-0.8 Ti, 0.05-0.15 Al, 8.5-9.5 Co
17-4 PH steel <0.07 15-17 3-5 - I | 3-5Cu

15-5 PH steel <0.07 14-15.5 3.5-55 - <1 <1 2.5-4.5 Cu, 0.15-0.45 Nb

H13 Tool steel 0.32-0.45 4.75-5.5 - 1.1-1.75 0.2-06 08-1.2 0.8-1.2V

SAF2205 Duplex 55 <0.03 25 7 4 <1.2 <0.8




Austenitic stainless steels

a Grain length Cell diameter Cell wall thickness Impurities (N, H)
up to 0.2 mm <lum <160 nm <l nm
L
W -
Fusion boundary spacing Local misorientation Precipitates
up to 0.1 mm (£1°/cell) 10-150 nm
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Fig. Microstructure of LPBFed 316L steel at various length scales: (a) various length scales of the observed
microstructural features, (b) grain orientations are depicted using EBSD inverse pole figure mapping, (c) SEM
image of a cross section demonstrating HAGB, fusion boundaries (delineating melt pools), and a cellular
solidification structure (d) bright field TEM image of the cellular structure revealing dislocation networks at cell
boundaries, and (e) scanning TEM (STEM) image of the solidification cells with high-angle annular dark-field
(HAADF) oxide particles
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Source: Wang et al. 2018 [https://doi.org/10.1038/nmat5021]



Austenitic stainless steels

Fig. (a) STEM/EDS elemental maps of cellular
structure, (b) EDS line analysis along the

white dashed line, (c) CALPHAD simulation of
changes in Cr distribution through a cell wall
as a function of annealing temperature fora 1
hour holding time. The fitted experimental data
shown in b is the starting profile of the as-built
material (red curve), and (d) Calculated
differences in Cr and Mo content between cell
walls and cell interiors as a function of
annealing temperature for various holding
times. The star symbols indicate the simulated
temperatures

I HAADF

.

Source: Voisin et al 2021 [https://doi.org/10.1016/j.actamat.2020.11.018]
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Austenitic stainless steels

Fig. (a), (b) Bright field TEM micrographs
of as built LPBFed 316L SS processed with
various processing parameters, and (c),
(d) Selected area diffraction pattern
(SADP) corresponding to (a) and (b) TEM
micrographs, respectively

Source: Sabzi et al. 2022 [https://doi.org/10.1016/j.scriptamat.2021.114307]



Austenitic stainless steels

Fig. a) Tensile engineering stress-strain
curve for LPBF 316L SS, The minimum
tensile requirements for 316L SS are
indicated by dashed yellow lines. b) The
strain-life fatigue behavior of LPBF 304L
austenitic SS and wrought 304L SS was
compared. c) Wear behaviour of LPBF
316L SS after grinding (d) conventional
316L SS, demonstrating comparable
wear resistance for LPBF 316L austenitic
stainless steel at temperatures up to
400-C.
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Source: Haghdadi et al. 2021 [https://doi.org/10.1016/j.msea.2022.143882]



Austenitic stainless steels
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Fig. (a) Representation of strengthening of
LAGBs compared to HAGBs in LPBFed 316L SS.
(b) Comparison of the Hall-Petch-type
relationship obtained for LPBFed 316L SS with /‘ . T ety
relationships reported for wrought 316L SS with |

various microstructures ‘ sl -

(CG: coarse grained, UFG: ultrafine grained and . e
NG: nanograined).
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Source: Sabzi et al. 2021 [https://doi.org/10.1016/j.matdes.2021.110246]



Austenitic stainless steels

As-built microstructure Tensile behaviour Microstructure after deformation
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Fig. (a) Representative EBSD inverse pole
figure (IPF) map showing a single crystalline
316L SS in the LPBF as-built state, which
went through DRX after tensile deformation
at room temperature, (b) and (c)
Representative EBSD IPF maps showing
DRX grains (black circles and arrows) after

Strain hardening rate or True stress (MPa)

0 T T T T T T T
0.00 005 0.10 0.15 0.20 025 030 0.35
True strain

IPF color code:

111
a
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show deformation twins along LAGBs), and ‘ 001 101
(d) Representative bright field TEM * e
micrograph showing DRX grains along grain ~ BD //LD | R deformed
boundaries (GB) after deformation of the ”\T / LTD ; 4 i
same polycrystalline LPBFed 316L SS U - :
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Marageing steels Energy
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Source: Takata et al.2018 [https://doi.org/10.3390/met8060440]



Marageing steels

Fig. APT of (a) LMDed and (b)
conventionally produced 18Ni-300
marageing steel after ageing heat
treatment. Both materials contain three
distinct types of precipitates, as indicated
by three distinct iso-concentration
surfaces. (c) APT microstructure section
that includes both precipitate-containing
martensite and precipitate-free austenite
of LMDed 18Ni-300 marageing steel
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Source: Jagle et al. 2017 [https://doi.org/10.3390/ma10010008]



Marageing steels
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Fig. Fabrication of compositionally graded marageing steel with LMD as a result of intrinsic heat treatments. Al-
rich precipitates were increased by the number of layers deposited on the previous layers. (T, :melting

temperature)
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Source: Kurnsteiner et al. 2017 [https://doi.org/10.1016/j.actamat.2017.02.069]



Marageing steels
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Fig. Toughness increase via TRIP effect
promoted via thermal cycling and ageing: (a)

Direct Aging

(DA)

480°C

Thermally Cycled + Aging
(TCA)

750°C
5 mins x2

Heat treatment routes and (b) crack resistance (b)
curves (J-integral) of the LPBFed 18Ni-300
marageing steels after two heat treatments as
shown in (a)

(In the EBSD phase maps that are shown in (b),
blue and yellow indicate martensite and
austenite phases, respectively. In J-integral
curves, the solid and dashed lines correspond
to a crack propagating parallel and
perpendicular to build direction, respectively)

Source: Paul et al. 2022 [https://doi.org/10.1016/j.msea.2022.143167]
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Precipitation hardening stamless steels

Fig. (a) Representative EBSD IPF map showing
nearly fully martensitic microstructure of a
solution annealed and aged LPBFed 15-5 PH
SS, (b) STEM micrograph revealing the nature
of inclusions in LPBF as-built 15-5 PH SS, and
(c) Representative bright field TEM micrograph
of solution annealed and aged LPBFed 15-5 PH
SS showing the pile-ups of dislocations (red
arrows) at the grain boundaries

15
Source: Nong et al. 2020 [https://doi.org/10.1016/j.scriptamat.2019.10.040]



Precipitation hardening stainless steels

Fig. (a) STEM representation of geometrically
necessary dislocations in 17-4 PH SS

in As-LPBF state. (b) EBSD analysis showing band
contrast (BC), phase map of martensite

(BCT phase in blue) and austenite (FCC phase in
red), and the IPF maps of martensite (BCT)

and austenite (FCC) in LPBF+Direct Ageing of 17-
4 PH SS; (c)-(f) Represent schematics of
microstructure-property in LPBFed 17-4 PH SS:
(c) Fine packets of martensite (matrix) and
reverted austenite with dispersed nano Mn and
Si oxides. (d) Solution heat treatment (SHT)
followed by water quenching increased
martensite fraction and induced some Cu
precipitation, (e) Ageing increased Cu-rich
precipitates and induced some austenite
reversion, and (f) Direct ageing after LPBF, which
increased austenite reversion and induced some
Cu-rich precipitates, and (g) Stress-strain tensile
curves of cast and wrought (C&W) and LPBFed
17-4 PH SS.
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Tool steels

Fig. (a) The relative density of LPBFed H13 tool
steel parts corresponding to volumetric energy

Relative density (%)

density (E,) for preheat and non-preheat
conditions, (b)-(d) Representative optical
micrographs showing pores and cracks in non-
preheated samples with various E,, (e)-(g)
Representative optical micrographs showing
no cracks in preheated samples with various E,,
and (h) and (i) Schematics of formation of
compressive (blue arrows) and tensile (red
arrows) residual stresses during LPBF layer

deposition
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Duplex stainless steels
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Source: Freitas et al. 2022 [https://doi.org/10.1016/j.jallcom.2022.165576]



Summary

Process:
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Fig. Overview of the mechanical properties of various steels produced by AM and
conventional manufacturing

Source: Bajaj et al. 2020 [https://doi.org/10.1016/j.msea.2019.138633]



S u m m a ry Austenitic Duplex PH Tool Microstructural

Process i Z g &
stainless steels stainless steels stainless steels steels constituents:
Cu ppt carbides ; Solidification
= : —— cells/dendrites
Conventionally : :
=
produced ’:‘§ Martensite
(including heat ';;\,ﬂ\\
treatment) ’ = -
a a - . e .
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Fig. Schematic overview of the typical microstructures of various steels produced by AM and conventional
manufacturing. ppt, y ret., a, a’, y, and GB denote precipitates, retained austenite, ferrite, martensite,
austenite, and grain boundary, respectively
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Source: Bajaj et al. 2020 [https://doi.org/10.1016/j.msea.2019.138633]
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