Additive manufacturing challenges and applications

Contents

- □ Introduction
- Process-induced defects
- Printability
- □ Current application of additively manufactured alloys
- □ Summary

Introduction

- Ti, Al, Fe, Ni-based systems
- Needed deep understanding of processing defects
- Need to relate to microstructural features

Process-induced defects – Hot cracking

Fig. Schematic mechanism of hot cracking

 σ_{ss} solid-liquid interfacial stress, σ_{ss} grain boundary interfacial stress, ϑ : is the misorientation angle.

Source: Zhou et al. 2018 [https://doi.org/10.1016/j.matdes.2018.10.042]

Process-induced defects – Hot cracking

Backfilling parameters:

- Dendrite tortuosity,
- Liquid fraction, fluidity,
- Surface tension

Fig. Schematic mechanism of hot cracking

Cracking during solidification can occur in systems with intermediate wettability and backfilling values

Process-induced defects – Hot and liquation cracking

Fig. Representation of cracking expanding modes

Source: Zhou et al. 2018 [https://doi.org/10.1016/j.matdes.2018.10.042]

Process-induced defects – Hot and liquation cracking

Liquation cracking occurrence:

- Grain boundary angle
- Low melting point compounds
- Thermal stress causes liquid films to be torn apart
- Large residual stresses

Fig. Representation of cracking expanding modes

Process-induced defects - modelling

Fig. CALPHAD-based ICME framework to model solidification cracking susceptibility of an AMed Ti alloy

Source: Sargent et al. 2021 [https://doi.org/10.3390/met11040570]

Process-induced defects

(a) flowchart of cracking analysis

Source: Lee et al. 2018 [https://doi.org/10.1007/s11661-018-4788-8]

Process-induced defects – porosity

Fig. Types of defects: (a) cracks, (b) balling, (c) lack of fusion, and (d) porosity

Source^{(a),(c),(d)} : Cunningham et al. 2016 [https://doi.org/10.1007/s11837-015-1802-0] ^(b)Zhang et al. 2016 [https://doi.org/10.1179/1753555715Y.0000000076]

Process-induced defects – porosity

Fig. Schematics of an algorithm for modelling of porosity in AMed builds

Source: Ning et al. 2019 [https://doi.org/10.1007/s00339-019-3092-9]

Process-induced defects – porosity criteria

Balling L/W < 2.3,

$$\begin{array}{l} {\rm Lack \ of \ fusion } \left(\frac{h}{W} \right)^2 + \frac{t}{t+D_m} \leq 1. \quad \left(\frac{h}{W} \right)^2 + \left(\frac{t}{D_m} \right)^2 \leq 1, \\ \\ D_m/t > 1.5 \end{array}$$

h: hatch distance, W: melt pool width, t: layer thickness, D_m : melt pool depth L: melt pool length

$$E_D = \frac{P}{vht}.$$
 Lack of fusion & key hole
$$H_n = \frac{AP}{h_s\sqrt{\pi v dD^3}},$$

Process-induced defects – roughness

Fig. Influence of laser on roughness reduction

Source: Temmler et al. 2012 [https://doi.org/10.1117/12.906001]

Process-induced defects – residual stress

Stripe hatch pattern Medium build rate Medium residual stress Suitable for large parts

Chessboard hatch pattern Slow build rate Lower residual stress Suitable for large parts

Fig. Selected hatch pattern examples that leads to various residual stress contents

Scan speed

Fig. compromise among key processing parameters

Source: Oliveira et al. 2020 [https://doi.org/10.1016/j.matdes.2020.108762]

Fig. Influence of scan speed and Laser energy on defect formation

Source: Kumar et al. 2019 [https://doi.org/10.1007/s00170-019-03655-9]

Fig. Inputs and outputs in for the computational modelling of a range of AM defects

Source: Johnson et al. 2019 [https://doi.org/10.1016/j.actamat.2019.07.005]

Fig. Influence of linear energy density and hatch distance on build qualtiy

Source: Mahmoudi et al. 2018 [https://doi.org/10.1016/j.jmapro.2018.08.037]

Current application of additively manufactured alloys

Fig. Capability of major companies on AM activity

Source: Yong et al. 2020 [http://dx.doi.org/10.3390/met10121576]

Current application of additively manufactured alloys

AM application to automotive

CURRENT

Fluid handling

Applications: Pumps, valves AM technique: LPBF, EBM Materials: Aluminium alloys

Manufacturing process

Applications: Prototyping, customised tooling, investment casting AM technique: Binder jetting, LPBF Materials: Hot work steels

Exhaust/emissions Applications: Cooling vents AM technique: LPBF Materials: Aluminium alloys

FUTURE

Powertrain, drivetrain

Applications: Engine components AM technique: LPBF, EBM Materials: Aluminium, titanium alloys

Frame, body, doors

Applications: Body panels AM technique: LPBF Materials: Aluminium alloys

Wheels, suspension

Applications: Hubcaps, suspension springs AM technique: Binder jetting, LPBF Materials: Aluminium alloys

OEM components

Applications: Body-in-white AM technique: LPBF, EBM Materials: Aluminium alloys, steels Source: Cotteleer et al. 2013 [http://d2mtr37y39tpbu.cloudfront.net/wpconter uploads/2014/03/DUP718-dditive-Manufacturing Overview MASTER1.pdf