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Fig. LPBFed aluminum alloy papers that have been published in recent years

Source: Fiocchi et al. 2021 [https://doi.org/10.1016/j.matdes.2021.109651]



AlSi10Mg

Table: Chemical composition (%wt.) of aluminium alloys studied in this chapter

Alloy Al Si Mg Ti Mn Fe Cu Zn Sc Zr Cr
AlSilOMg Bal. 8.5-105 0.2-0.5 <0.15 - <09 <0.15 <0.1 - : :
AlSil2 Bal. 10.5-13.5 - <0.15 - <0.4 - <0.1 - . .
Scalmalloy Bal. <0.4 449 <0.15 03-08 <04 <0.1 <0.25 0.6-0.8 0.2-0.5 :
AlSi7TMg Bal. 6.5-7.5 05-08 <02 <01 <02 <0.05 <0.1 - . .
AA6061 Bal. 04-0.8 08-12 <0.15 <015 <0.7 0.15-04 <0.25 - - 0.04-0.35
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Source: Ghio et al. 2022 [https://doi.org/10.3390/ma15062047]
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Fig. SEM micrographs showing submicron cellular structures in AMed as-built
AlSil0OMg

Source: Maamoun et al. 2018 [https://doi.org/10.3390/ma12010012]
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Fig. Schematic representation of the creation of the three zones observed in LPBFed AlISi1l0Mg

(T, and T, are the liquidus and solidus temperatures, respectively)

Source: Maamoun et al. 2018 [https://doi.org/10.3390/ma12010012]
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Source: Liu et al. 2020 [https://doi.org/10.1016/j.actamat.2020.10.010]
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Source: Cauwenbergh et al. 2021 [https://doi.org/10.1038/s41598-021-85047-2]



AlSi10Mg
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Fig. Fracture surfaces of LPBFed AISi10Mg showing (a)
lack of fusion (LOF) defects, (b) various regions of crack
initiation, (c) ridges, (d) fatigue striations, and (e)
parabolic striations
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Fig. Fracture surfaces of LPBFed AISi10Mg showing NS s ”)
non melted particles in (a) and (c), LOF defects in (b) i R
and (d), melt pool boundaries in (d), and dimples in

(e)
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Source: Liu et al. 2020 [https://doi.org/10.1016/j.actamat.2020.10.010]

11



AlSil12

Fig. SEM micrograph of the LPBFed as-built AlSi12
along (a) scan direction and (b) building direction (the
insets in a and b show the high magnification areas in
the white rectangles, showing Si particles), (c) Typical
tensile stress-strain curves of the LPBFed as-built
AlSi12, (d) Tensile properties of the LPBFed as-built
AlSi12 (shown by a star) compared to those of

the reference LPBFed as-built AlSi12 and AlSi10Mg
alloys reporting different studies from literature

(MP: melt pool)
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Source: Ai et al. 2022 [https://doi.org/10.1016/j.jmrt.2022.04.008]
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AlSil12

Fig. (a) 3D representation of the pores in
the LPBFed AISi12 after various heat
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Number and size of pores in LPBFed AlSil12
after various heat treatments, (c) High
cycle fatigue of LPBFed AlSi12 after various
heat treatments showing better fatigue
properties of batch A at the beginning and
superior properties of batch B at the end

of high cycle fatigue
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AlSil12
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Fig. Densities of the LPBFed AlSi12 samples produced
with variations of P and v, and (a)-(d) HS = 75 um, HS =

85 um, HS = 100 um, and HS = 125 um, respectively
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Source: Gheysena et al. 2021 [https://doi.org/10.1016/j.matdes.2020.109433]



Scalmalloy

Precipitation of Al;Sc during LPBF

Growth of Al;Sc in re-melting region

Fig. Schematic representation of the precipitate size variation brought on by various
melt pool heat histories during AM of Scalmalloy

Source: Kuo et al. 2021 [https://doi.org/10.3390/met11040555]
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Scalmalloy

Fig. (a) Optical and (b) SEM micrograph showing the
typical microstructure of the LPBFed as-built
Scalmalloy

(CG and EG are columnar and equiaxed grains,
respectively, and the build direction is shown with
the yellow arrow)

Source: Bartl et al. 2022 [https://doi.org/10.1007/s11665-022-06592-7]



Scalmalloy

Fig. Dislocation structure of the FG regions of two LPBFed as-built Scalmalloy built
with (a) hatch distance of 100 um (d0.1) and (b) hatch distance of 60 um (d0.06)

Source: Ekubaru et al. 2022 [https://doi.org/10.1016/j.matdes.2022.110976]
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Scalmalloy

Fig. (a) - (g) HAADF-TEM micrographs in R . . 700 nm
a FG region of a LPBFed Scalmalloy 3
showing the presence of various
precipitates, (h) Bright field TEM
micrographs showing grain boundary
pinning of a columnar grain, indicated
by arrows, (i) a fine grain, and (j)
magnification of a grain boundary in a
fine grain. The selected area diffraction
pattern shows presence AlsSc at the
grain boundaries

Source: Spierings et al. 2017 [https://doi.org/10.1016/j.matdes.2016.11.040]
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Fig. Comparison between the yield strength (YS) and ultimate tensile strength of two
LPBFed Scalmalloy samples produced with the same processing parameters, but
different hatch spacings of 100 um (d0.1) and 60 um (d0.06), and their cast
counterpart

Source: Ekubaru et al. 2022 [https://doi.org/10.1016/j.matdes.2022.110976]
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Scalmalloy

(a)
Fig. EBSD micrographs of the x-z plane of (b) = " o — (&)
LPBFed Scalmalloy after dynamic loading, - e . - i
showing the crack tip area for the A U E’
following orientations: (a) horizontal, (b) Vﬂ 8wl
diagonal, (c) vertical, and (d) flat build. 0 R oo &
(e) Apparent crack growth resistance V,(Cr)- QAT LR n%’;,
curves for edge-notched three-point s DL ¥ o Hormonta
bend specimens under dynamic loading e B R e - il
conditions. It is worth noting that the g ) g . | | | | |
coordinates shown on the component’s (@) 5 60 65 ] kL7-° ) 75 8.0
schematics are separate from the R
coordinates shown on the EBSD
micrographs
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Source: Isaac et al. 2021 [https://doi.org/10.1016/j.msea.2021.141978]
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AlSi7Mg(A357)

Al cells

Fig. LPBFed A357 TEM micrographs displaying
the solidification Al cells in the (a) LPBFed as-
built and (b) SHTed for 1 h samples, (c) XRD
patterns displaying the peaks of the eutectic Al
and Si phases, and (d) the silicon content in the
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Source: Rao et al. 2017 [https://doi.org/10.1016/j.addma.2017.08.007]
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Fig. (a) Engineering stress-strain curves of LPBFed samples under as-built and various
heat-treated conditions. (b) The tensile properties of LPBFed A357 alloy samples SHTed over

various durations

Source: Rao et al. 2017 [https://doi.org/10.1016/j.addma.2017.08.007]
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AlSi7Mg(A357)
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Fig. (a) Hardness curves for
LPBFed A357 alloy and cast A357 60: T
after various heat treatment 10 of,
schemes, including direct ageing
(DA) at 165°C, solution treatment
at 535-C for 1 h followed by
ageing at 165°C (A165+ST),
solution treatment at 535°C for 1
h followed by ageing at 180-C
(A180+ST), and as-cast sample
after ageing at 180°C
(cast+A180), (b) TEM micrograph
of LPBFed A357 alloy with
randomly oriented Si particles .
aged for two hours (peakaged e
condition).
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Fig. (c) TEM micrograph showing the Al matrix filled
with precipitates of B’ and B shown in (d) and (e)
after 1 hour of solution treatment, followed by 6
hours of ageing
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Source: Rao et al. 2019 [https://doi.org/10.1016/j.scriptamat.2018.09.045]
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Fig. SEM micrographs taken from the cross-sections of the (a)-(c) original and (d)-(f) Zr-
modified AA6061 alloys in their LPBFed as-built states

Source: Mehta et al. 2021 [https://doi.org/10.1016/j.addma.2021.101966]
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Fig. Schematics of crack formation in
original AA6061 and crack prevention
in Zrmodified AA6061 fabricated with
LPBF
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Source: Mehta et al. 2021 [https://doi.org/10.1016/j.addma.2021.101966]
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