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Introduction

e Space for alloy discovery

 Complex synergies between processing and properties take place

* Very few material systems have been tailored to additive manufacturing
* Design freedom not yet fully exploited when considering materials



Additive manufacturing-based
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Additive manufacturing-based alloy design
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Fig. Alloy design for Metal Additive Manufacturing

Source: Zhang et al. 2018 [https://doi.org/10.1002/adem.201700952]



Optimisation methods
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Fig. Flow diagram of genetic algorithm
Source: Panwar et al 2021 [https://doi.org/10.1016/j.matpr.2021.03.642]



Optimisation methods

Strength

o Sub-optimal
(o) (dominated)alloys
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Fig. Multi-objective optimization (MOQ) to maximize the
strength and minimize the cost of the alloy

Source: Deschamps et al. 2018 [https://doi.org/10.1016/j.crhy.2018.08.001]



Optimisation methods
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Define system in ThermoCalc
(C. Cr, Ni, Mn, Mo, Si, W, N, P, S, Fe)
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Fig. Algorithm for thermodynamic calculations and criteria
evaluation using ThermoCalc

Source: Sabzi et al. 2020 [https://doi.org/10.1016/j.addma.2020.101360]



Optimisation methods

Traditional structure-property optimisation
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Machine learning-based structure-property optimisation

Source: Liu et al. 2015 [DOI: 10.1038/srep11551]



Optimisation methods

Processing parameter optimiSation
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Source: Meng et al. 2020 [https://doi.org/10.1007/s11837-020-04155-y]



Optimisation methods

Input layer Hidden layers Output layer
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—> Output
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Fig. Schematic neural network model

Source: Dewan et al. 2016 [https://doi.org/10.1016/j.matdes.2015.12.005]
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CALPHAD methodology

Selection and Selection of
evaluation of models for the
input data Gibbs free energy

Optimisation of model parameters
(error minimisation)

Calculation (phase and property
diagrams) and comparison

Applications (e.g. thermodynamic
databases for predictions and
simulations)

Fig. Flowchart of Calculation of phase diagrams (CALPHAD) method

Source: Cacciamani 2016 ghtt?://fl .doj.org/10.4322/2 76—1523.104%&
Source: Cacciamani 2016 [http: fdx.dm.org 10.4322/2176-1523.1048]



CALPHAD methodology
CALPHAD
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Fig. Schematic alloy selection approach using calculation of phase diagrams
(CALPHAD) and phase transformations methods

Source: Motaman et al. 2020 [https://doi.org/10.1007/s11837-020-04028-4]
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Alloy design by combinatorial optimisation

4 Integrated computational screening )
A A
GA
. e
|
. B i . -‘,‘B
S S '
: C C
Potential Machine learning model Composition selection/
kcompositlon space & CALPHAD Sample library design /

Fig. Integrated computational screening using CALPHAD and machine
learning models

Source: Vecchio et al. 2021 [https://doi.org/10.1016/j.actamat.2021.117352]
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