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• Grain size control
• Microsegregation
• Precipitation
• Texture
• Twinning
• Deformation-induced transformations

• Strength and ductility
• Toughness
• Fatigue
• Corrosion
• Irradiation resistance
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Introduction



General microstructural characteristics

Source: Pham et al. 2020 [https://doi.org/10.1038/s41467-020-14453-3]
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Fig. Thermal gradient (G) variation with 
distance form the bottom of the melt
pool 
(R: solidification speed, G:Thermal gradient)



General microstructural characteristics

Mishra and Thapliyal 2021 [https://doi.org/10.1016/j.matdes.2021.109640]
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Fig. Expected microstructures resulting from
(R: solidification speed, G:Thermal gradient)



Source: Kirka et al. 2017 [http://dx.doi.org/10.1016/j.scriptamat.2017.01.005]
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General microstructural characteristics

Fig. Typical variation in temperature for
Subsequent printed layers L1, L2, …



Source: Jiang et al. 2020 [https://doi.org/10.1016/j.addma.2020.101282] 7

General microstructural characteristics

Fig. Typical temperature variation at a given point in the subsurface
Note: the time axis is shifted as the laser is approximately approaching the reference point



Source: Liu et al . 2022 [https://doi.org/10.1016/j.jmst.2021.06.011]
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General microstructural characteristics
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General microstructural characteristics

Source: Liu et al . 2022 [https://doi.org/10.1016/j.jmst.2021.06.011]

Fig. Schematics of dislocation cell formation during AM thermal cycling



Restoration mechanisms

Source: Sabzi et al. 2021 [https://doi.org/10.1016/j.matdes.2021.110246]
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Fig. Typical dislocation cell structures formed at various stages of heating and cooling
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Restoration mechanisms

Fig. Variation of recovery, continuous (CDRX)
And discontinuous dynamic recrystallization 
(DDRX) at various strain stages and for various
Strain rates 

Where,
ሶ𝜀 : strain rate
ሶ𝜀𝑐
𝑇: critical strain rate for Dynamic 

recrystallization activation

𝜀𝑐
𝑐/𝑇

: critical strain for the Formation of high-
angle grain boundaries

Source: Sabzi et al. 2021 [https://doi.org/10.1016/j.matdes.2021.110246]



Source: Karimi et al. 2021 [https://doi.org/10.1016/j.addma.2021.102086] 12

Restoration mechanisms

Fig. Remelting stages influence on substructure formation



Source: Xu et al. 2021 [https://doi.org/10.1016/j.matdes.2021.109940]
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Restoration mechanisms

Fig. Influence of build direction on
Microstructural orientation (a) Sample 
SS-0, (b) sample SS-90, and (c) sample SS-
67, and (d) volume fraction of 
recrystallization.



Modelling approaches

Source: Gatsos et al. 2020 [https://doi.org/10.1007/s11837-019-03913-x]
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Fig. Workflow of AM modelling 



Source: Tan et al. 2020 [https://doi.org/10.1080/17452759.2019.1677345]
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Modelling approaches

Fig. Description of element configurations in meting stages



Residual stress and distortion equations

σ: residual stress
ϵ: distortion
C: stiffness tensor

ϵe: elastic strain
ϵp: plastic strain
ϵT: thermal strain
ϵV thermal strain due to phase transformations

αCTE :coefficient of thermal expansion
Tref : is the reference temperature
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Modelling approaches

Source: Tan et al. 2020 [https://doi.org/10.1080/17452759.2019.1677345]



Source: Park et al. 2020 [https://doi.org/10.1016/j.matdes.2020.108985]
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Modelling approaches – Phase field simulations of orientation

Fig. Accuracy of Phase field simulation for grain morphology and orientation 



Phase field modelling equations

F: microstructure free energy functional
L: kinetic rate coefficient

f0 (ϕ, T):local free energy density, 
V: volume,
κϕ : gradient energy coefficient.

fS and fL : free energies of the solid and liquid phases, 
respectively, 
Q: height of the activation barrier at the interface, 
h = ϕ2(3−2ϕ), and 
f = ϕ2 (1−ϕ)2

𝛾: specific interfacial energy (interfacial energy per unit 
area)



Monte Carlo mathematical formulation

P: acceptance probability

kB: Boltzmann constant, 

kBTs : thermal fluctuation during simulation,

ΔE: overall system energy change



Source: Rodgers et al. 2017 [https://doi.org/10.1016/j.commatsci.2017.03.053]
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Modelling approaches

Fig. Comparison of AMed experimental and MC simulated 
microstructures on IN718 showing a good agreement



Cellular automata equations
ΔT: liquid undercooling 

n: Continuous grain density

nmax: maximum nucleation density,

ΔTmean: mean undercooling when nucleation occurs 

ΔTσ: standard deviation of the undercooling

Ω: solute supersaturation, 

C*: liquid solute concentration at the dendrite tip, 

C0: initial solute concentration, 

V: growth speed of the dendrite tip, 

R: radius of the dendrite tip, 

D:solute diffusion coefficient, 

Iv :Ivantsov’s solution,

K: partition coefficient, 

m: liquidus slope, 

Γ: Gibbs-Thomson coefficient, 𝜉𝑐

Gc: solute gradient, 

G: temperature gradient, 

ΔT: undercooling temperature



Source: Grilli et al. 2022 [https://doi.org/10.1007/s00466-021-02116-z]
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Summary

Fig. Integration of processing-microstructure-properties modelling in AM
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